
	

©	education.makeblock.com	 	 	 1	

	

	
Subject:	STEAM	 																								Grade(s):	5th	and	up	

Duration:	45	minutes																Difficulty:	Intermediate	

	

	Lesson	objectives	

By	the	end	of	this	activity,	students	will	be	able	to:	

• Use	event	based	coding	

• Store	data	in	variables		

• Work	with	a	different	kind	of	Motor,	the	servo	

• Build	an	Automation	solution	

	Overview	

In	cities,	parking	space	for	vehicles	is	rare.	A	parking	area	with	restricted	access	increases	safety	and	comfort	as	

well.	In	this	activity	students	will	build	an	automatic	gate	system	that	lets	vehicles	pass	in	both	directions.	

Starting	simple,	the	gate	opens	by	a	press	of	a	button	and	closes	after	some	time.	This	is	the	starting	point	of	a	

journey	into	STEAM…	depending	on	the	students’	interests,	this	simple	system	can	be	extended:	

- Secured	area,	access	only	with	temper-proof	ID.	Use	Image	recognition	(TM,	see	Lesson	9)	

- Remote	management:	Display	the	current	number	of	parking	vehicles	on	the	internet.	

- Use	colour	codes	for	special	discounts	on	the	parking	fee	

- Use	multiple	entry	systems	that	communicate	with	each	other.	

- Challenge	the	other	teams	in	the	class	to	“hack”	your	system	and	open	the	barrier	unauthorized.	Can	you	

develop	temper-proof	systems?	

Next	to	the	fun-factor	for	students,	there	are	quite	some	STEAM-related	topics	involved.	Starting	simple	with	

event	based	coding,	the	level	of	complexity	can	be	adjusted	on	the	fly.	

This	activity	does	not	include	ready-made	solutions	but	explains	the	most	important	concepts	and	code-fragments,	

so	students	can	develop	the	entire	algorithm	and	program	code	instead	of	just	replicating	a	given	computer	

program.		

	

	Focus	

Activity	1:	

Parking	Gate!	



	

By	the	end	of	this	lesson,	students	will	know:	

• How	to	make	use	of	event-based	coding	

• Use	sensor	data	and	variables	to	store	data	

• Use	a	different	kind	of	motor,	the	servo.	

• How	to	Realize	their	own	projects:	starting	small,	adding	complexity	step	by	step	

	

 Pre-lesson	Checklist	

What	do	you	need?	

• PC	or	laptop	(with	USB	output)	with	the	mBlock	software	installed,	the	web	version	(also	for	Chromebook),	

or	a	tablet	with	the	mBlock	app	installed	

• The	mBot2	with	a	CyberPi		

• A	USB-C	cable	or	Makeblock	Bluetooth	dongle	

• mBot	Bracket	Pack	Add-On	

• 9g	Micro	Servo	Robot	Pack	

	

	Activity	Plan	

This	activity	consists	of	four	steps	and	takes	a	total	of	45	minutes.	

Duration	 Contents	

5	minutes	

1.	Warming	up	

• Getting	to	know	a	different	kind	of	motor	

• Discussing	simple	approach	for	opening	&	closing	the	gate	

10	minutes	

2.	Hands-on	

• Getting	to	know	the	coding	blocks	

• Building	the	gate	

• Testing	simple	program	

25	minutes	

3.	Test	and	Development	

• Discuss	additions	your	team	wants	to	add	

• Test,	Improve,	Repeat	�	–	then	challenge	other	teams	



	

©	education.makeblock.com	 	 	 3	

5	minutes	

4.	Wrap-up	

• Showtime:	Which	improvements	were	realized	by	the	teams?	

• Did	anybody	develop	a	temper-proof	solution?	

• Reflection:	what	are	you	most	proud	of?	What	would	you	like	to	improve	about	

your	robot	and	code?	

	

	

	

	

	Activities	

1.	Warming	up	
(5	min)	

Step	1:	Warming	up		

This	step	consists	of	two	parts:	

1. Getting	to	know	a	different	kind	of	motor	
2. Discussing	simple	approach	for	opening	&	closing	the	gate	

	

1.	Getting	to	know	a	different	kind	of	motor	

“Normal”	motors	start	to	spin	when	they	are	powered	up.	The	Servo	motor	contains	a	motor	like	that	(you	can	see	it	

through	the	plastic	casing),	but	gears	and	electronics	as	well.	Its	purpose	is	to	rotate	to	a	given	position	and	keep	this.	

It	only	rotates	within	a	range	of	ca	180°.	The	third	wire	is	used	to	provide	the	information	of	which	angle	to	turn	to	in	

a	coded	format,	the	other	are	just	powerline,	like	every	ordinary	motor.	

Whenever	small,	precise	movements/rotations	are	needs,	these	motors	are	widely	used	(in	RC	toys	for	steering,	e.g.).	

	

2.	Discussing	simple	approach	for	opening	&	closing	the	gate	

The	scope	of	this	project	is	to	start	small	and	then	grow	the	complexity	of	the	project:	Implement	a	new	feature,	test,	

improve,	repeat…	following	this	circle,	students	can	develop	individual	solutions	with	different	levels	of	complexity.	

The	first	task	is	to	open	by	pressing	a	button,	wait	a	few	moments,	then	close	again.	

	

2.	Hands-on	
(20	min)	



	

Step	2:	Hands-on:	

This	step	consists	of	3	parts:	

1. Getting	to	know	the	coding	blocks	

2. Building	the	gate	

3. Testing	simple	program	

	

	

1.	Getting	to	know	the	coding	blocks	

Before	building	the	extension	that	opens	and	closes	the	gate,	students	need	to	be	aware	of	the	relevant	coding	

blocks.	The	servomotor	rotates	in	a	range	of	0-180°,	but	the	current	position	is	unknown	until	the	first	position	

command	is	executed.	

To	build	the	gate	perfectly	aligned	and	opening	upwards	(not	“down”),	students	first	need	to	connect	the	servomotor	

and	set	it	to	a	starting	position.	The	servo	will	be	connected	to	the	S1	port	next	to	mBot2’s	power	switch.	The	

connector	cannot	be	reversed,	it	only	fits	one	way.	

So	far,	the	mBot2	extensions	from	the	Chassis	have	been	used,	now	we	will	cover	coding	blocks	from	the	

mBot2	Extension	Part	(scroll	down	the	extensions	list,	if	you	don’t	see	them):	

	

	

	

	

Code	block:	

	

This	block	make	the	Servo	connected	to	Part	S1	to	move	to	90°,	a	middle-position	of	the	entire	range.	

By	default,	all	Servo-Ports	are	selected;	this	should	be	changed	to	S1	only.	

	

	

This	block	reports	the	degrees	the	servo	was	instructed	to	turn	to.	It	does	not	read	its	“real”	position.	In	

case	the	servo	can’t	turn,	because	the	load	is	too	heavy	or	if	the	servo	has	been	switched	off	and	

moved,	this	block	will	report	a	wrong	position	(the	intended	position,	not	the	actual	one).	The	servo	

has	an	internal	control	mechanism	to	turn	to	the	destination,	but	there	is	no	feedback	to	the	computer	

if	the	position	is	reached.		

However,	it	is	useful	in	finding	out	the	position	that	the	servo	should	turn	to	–	you	don’t	need	to	keep	it	

in	a	separate	variable.	



	

©	education.makeblock.com	 	 	 5	

	

	

This	block	will	switch	the	power	of	the	servo	off.	It	then	can	be	moved	by	hand	or	under	a	load	big	

enough.	If	not	switched	on,	the	internal	control	electronic	will	constantly	try	to	hold	the	desired	

position	and	keeps	the	little	motor	inside	the	servo	switched	on…	

	

	

Before	you	actually	start	building	the	gate,	connect	the	Servo	to	port	S1,	connect	to	the	mBot2	in	mBlock5	in	live-

mode	and	run	the	following	program:	

	

This	will	position	the	servo	to	the	starting	position.	So	as	soon	as	you	attach	the	gate,	it	will	be	in	the	correct	position.	

	

2.	Building	the	gate	

Look	at	the	instructions	on	how	to	connect	the	servo	with	mBot2	and	the	beam	to	act	as	a	gate.	The	servo	axle	is	

ribbed	to	allow	a	fine	tuning	of	position	while	avoiding	any	slip.	The	laser-cut	acryl	disk	is	used	to	connect	the	servo	

axle	to	the	beam;	the	other	acryl	part	is	for	mounting	the	servo	itself.	Have	a	look	at	these	pictures:	

		 	

Preparation	and	assembly	–	check	that	the	beam	(gate)	is	at	the	0-position	(run	the	code	before)	



	

		 	

Assembled	on	mBot2…	and	complete	view.	

	

If	you	are	finished,	the	servo	motor	should	now	be	able	to	lift	and	lower	the	small	beam!	

	

	

3.	Testing	simple	program	

As	a	basis	to	start	from,	we	will	discuss	a	simple	first	program	that	opens	on	command	and	closes	after	a	short	

moment	again.	For	this,	we	will	use	event	based	coding	–	the	code	is	executed	if	the	liked	event	takes	place	(like	a	

button	press),	there	is	no	need	to	constantly	check	for	a	key	being	pressed	in	a	loop:	

	

By	pressing	button	B	on	mBot2,	the	gate	moves	up	(90°),	and	is	lowered	again	after	5	seconds.	

Make	sure	this	works	and	everybody	from	the	team	has	understood	the	concept	and	different	way	to	control	this	

servo	motor.	

In	the	next	step	you	are	going	to	improve	this	simple	program.	



	

©	education.makeblock.com	 	 	 7	

	

3.	Test	and	Development	
[25	minutes]	

Discuss	within	the	team	which	limitations	you	see	with	this	simple	design	and	try	to	improve	it.	Consider	safety	of	use	

over	comfort!	

You	can	have	a	short	brainstorming	on	ideas,	then	link	them	with	suggestions	how	to	realize	the	ideas	and	check	if	

you	are	confident	realizing	it	in	the	timeframe	of	this	step.	

	

Suggestions	for	improvement:	

- What	happens	if	the	vehicle	needs	to	stop	under	the	gate	or	can’t	pass	in	time?	

- Can	you	manually	temper	with	the	gate	if	it	is	locked?	

- Think	of	colour	codes	you	can	use	…	for	a	rebate	on	parking	bill	or	as	access	restrictions	

- Draw	an	image	to	serve	as	a	“water	mark”	on	a	ticket	system	for	high	secure	areas	(banks,	e.g.).	Use	the	

Teachable	Machine	feature	to	recognize	this	with	a	webcam	(see	getting	started	activities	unit	9)	

- Use	different	buttons	for	entering	or	leaving	and	count	the	number	of	vehicles	in	the	parking	zone.	Make	sure	

your	code	does	not	open	the	gate	of	there	are	no	vehicles,	or	that	the	number	of	vehicles	does	not	exec	the	

available	space	(or	drops	negative)	

- You	can	exchange	data	between	multiple	mBot2	–	how	about	a	networked	control	system	that	keeps	track	

of	entering	and	leaving	vehicles?	

There	is	a	huge	variety	of	options	students	can	choose	from	to	improve	this	starting	code,	and	for	most	of	them	

multiple	solutions	should	be	possible.	This	helps	increasing	interest	in	STEAM	by	allowing	a	diversity	of	ideas,	

concepts	and	different	path	to	a	solution.	

	

Now	it	is	time	for	a	challenge:	Invite	other	teams	to	test	your	team’s	development…	and	maybe	they	find	further	

suggestions	how	to	improve?	Can	they	“hack”	your	secure	gate	system?	Can	you	circumvent	their	security?	Discuss,	

why	thinking	this	way	is	an	important	approach	as	well.	

	

4.	Wrap	up	
(5	min)	



	

Step	4:	Wrap	up		

At	the	end	of	the	activity,	the	variety	of	solutions	should	be	summarized	for	all	teams.	Which	safety	systems	were	put	

in	place?	What	improvements	did	the	teams	think	of,	but	decided	not	to	implement	for	now?	

Discuss	a	review	of	the	activity	by	the	following	questions:	

• What	do	you	think	worked	out	well?	

• What	could	be	better?	

• Which	parts	of	the	activity	did	you	find	easy,	and	which	did	you	find	more	difficult?	

• What	would	you	like	more	explanation	about?	

• Who	could	help	you	with	that?	

But	mostly,	have	fun	doing	STEAM	�	

	

	

	

	


